Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
PLOS Glob Public Health ; 3(5): e0001675, 2023.
Article in English | MEDLINE | ID: covidwho-2317515

ABSTRACT

Causes of non-malarial fevers in sub-Saharan Africa remain understudied. We hypothesized that metagenomic next-generation sequencing (mNGS), which allows for broad genomic-level detection of infectious agents in a biological sample, can systematically identify potential causes of non-malarial fevers. The 212 participants in this study were of all ages and were enrolled in a longitudinal malaria cohort in eastern Uganda. Between December 2020 and August 2021, respiratory swabs and plasma samples were collected at 313 study visits where participants presented with fever and were negative for malaria by microscopy. Samples were analyzed using CZ ID, a web-based platform for microbial detection in mNGS data. Overall, viral pathogens were detected at 123 of 313 visits (39%). SARS-CoV-2 was detected at 11 visits, from which full viral genomes were recovered from nine. Other prevalent viruses included Influenza A (14 visits), RSV (12 visits), and three of the four strains of seasonal coronaviruses (6 visits). Notably, 11 influenza cases occurred between May and July 2021, coinciding with when the Delta variant of SARS-CoV-2 was circulating in this population. The primary limitation of this study is that we were unable to estimate the contribution of bacterial microbes to non-malarial fevers, due to the difficulty of distinguishing bacterial microbes that were pathogenic from those that were commensal or contaminants. These results revealed the co-circulation of multiple viral pathogens likely associated with fever in the cohort during this time period. This study illustrates the utility of mNGS in elucidating the multiple potential causes of non-malarial febrile illness. A better understanding of the pathogen landscape in different settings and age groups could aid in informing diagnostics, case management, and public health surveillance systems.

2.
JAMA Netw Open ; 6(2): e2255978, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2239367

ABSTRACT

Importance: Estimating the true burden of SARS-CoV-2 infection has been difficult in sub-Saharan Africa owing to asymptomatic infections and inadequate testing capacity. Antibody responses from serologic surveys can provide an estimate of SARS-CoV-2 exposure at the population level. Objective: To estimate SARS-CoV-2 seroprevalence, attack rates, and reinfection in eastern Uganda using serologic surveillance from 2020 to early 2022. Design, Setting, and Participants: This cohort study was conducted in the Tororo and Busia districts of eastern Uganda. Plasma samples from participants in the Program for Resistance, Immunology, Surveillance, and Modeling of Malaria in Uganda Border Cohort were obtained at 4 sampling intervals: October to November 2020, March to April 2021, August to September 2021, and February to March 2022. Each participant contributed up to 4 time points for SARS-CoV-2 serology, with almost half of all participants contributing at all 4 time points, and almost 90% contributing at 3 or 4 time points. Information on SARS-CoV-2 vaccination status was collected from participants, with the earliest reported vaccinations in the cohort occurring in May 2021. Main Outcomes and Measures: The main outcomes of this study were antibody responses to the SARS-CoV-2 spike protein as measured with a bead-based serologic assay. Individual-level outcomes were aggregated to population-level SARS-CoV-2 seroprevalence, attack rates, and boosting rates. Estimates were weighted by the local age distribution according to census data. Results: A total of 1483 samples from 441 participants living in 76 households were tested. Of the 441 participants, 245 (55.6%) were female, and their mean (SD) age was 16.04 (16.04) years. By the end of the Delta wave and before widespread vaccination, adjusted SARS-CoV-2 seroprevalence was 67.7% (95% credible interval [CrI], 62.5%-72.6%) in the study population. During the subsequent Omicron wave, 84.8% (95% CrI, 67.9%-93.7%) of unvaccinated, previously seronegative individuals were infected for the first time, and 50.8% (95% CrI, 40.6%-59.7%) of unvaccinated, already seropositive individuals were likely reinfected, leading to an overall seropositivity of 96.0% (95% CrI, 93.4%-97.9%) in this population. These results suggest a lower probability of reinfection in individuals with higher preexisting antibody levels. There was evidence of household clustering of SARS-CoV-2 seroconversion. No significant associations were found between SARS-CoV-2 seroconversion and gender, household size, or recent Plasmodium falciparum malaria exposure. Conclusions and Relevance: In this cohort study in a rural population in eastern Uganda, there was evidence of very high SARS-CoV-2 infection rates throughout the pandemic inconsistent with national level case data and high reinfection rates during the Omicron wave.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Female , Adolescent , Male , Rural Population , COVID-19/epidemiology , COVID-19 Vaccines , Cohort Studies , Reinfection , Seroepidemiologic Studies , Uganda/epidemiology
3.
Malar J ; 21(1): 293, 2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2139303

ABSTRACT

BACKGROUND: In 2020-2021, long-lasting insecticidal nets (LLINs) were distributed nationwide in Uganda during the COVID-19 pandemic. A cross-sectional survey was conducted in 12 districts to evaluate the impact of the campaign 1-5 months after LLIN distribution. METHODS: During April-May 2021, households were randomly selected from target areas (1-7 villages) surrounding 12 government-run health facilities established as Malaria Reference Centres; at least 50 households were enrolled per cluster. Outcomes included household ownership of LLINs distributed through the universal coverage campaign (UCC) (at least one UCC LLIN), adequate coverage of UCC LLINs (at least one UCC LLIN per 2 residents), and use of LLINs (resident slept under a LLIN the previous night). Multivariate logistic regression models were used to identify household- and individual-level factors associated with outcomes, controlling for clustering around health facilities. RESULTS: In total, 634 households, with 3342 residents and 1631 bed-nets, were included. Most households (93.4%) owned at least 1 UCC LLIN, but only 56.8% were adequately covered by UCC LLINs. In an adjusted analysis, the factor most strongly associated with adequate coverage by UCC LLINs was fewer household residents (1-4 vs 7-14; adjusted odds ratio [aOR] 12.96, 95% CI 4.76-35.26, p < 0.001; 5-6 vs 7-14 residents; aOR 2.99, 95% CI 1.21-7.42, p = 0.018). Of the 3166 residents of households that owned at least one UCC LLIN, only 1684 (53.2%) lived in adequately covered households; 89.9% of these used an LLIN the previous night, compared to 1034 (69.8%) of 1482 residents living in inadequately covered households. In an adjusted analysis, restricted to residents of inadequately covered households, LLIN use was higher in children under-five than those aged 5-15 years (aOR 3.04, 95% CI 2.08-4.46, p < 0.001), and higher in household heads than distantly-related residents (aOR 3.94, 95% CI 2.38-6.51, p < 0.001). CONCLUSIONS: Uganda's 2021-21 campaign was successful, despite the COVID-19 pandemic. In future campaigns, strategies should be adopted to ensure high LLIN coverage, particularly for larger households. A better understanding of the drivers of LLIN use within households is needed to guide future interventions, educational messages, and behaviour change communication strategies; school-aged children and distantly-related residents appear vulnerable and could be targeted.


Subject(s)
COVID-19 , Insecticide-Treated Bednets , Child , Humans , COVID-19/epidemiology , Cross-Sectional Studies , Pandemics , Uganda/epidemiology , Family Characteristics , Child, Preschool , Adolescent
4.
Malaria journal ; 21(1), 2022.
Article in English | EuropePMC | ID: covidwho-2073546

ABSTRACT

Background In 2020–2021, long-lasting insecticidal nets (LLINs) were distributed nationwide in Uganda during the COVID-19 pandemic. A cross-sectional survey was conducted in 12 districts to evaluate the impact of the campaign 1–5 months after LLIN distribution. Methods During April–May 2021, households were randomly selected from target areas (1–7 villages) surrounding 12 government-run health facilities established as Malaria Reference Centres;at least 50 households were enrolled per cluster. Outcomes included household ownership of LLINs distributed through the universal coverage campaign (UCC) (at least one UCC LLIN), adequate coverage of UCC LLINs (at least one UCC LLIN per 2 residents), and use of LLINs (resident slept under a LLIN the previous night). Multivariate logistic regression models were used to identify household- and individual-level factors associated with outcomes, controlling for clustering around health facilities. Results In total, 634 households, with 3342 residents and 1631 bed-nets, were included. Most households (93.4%) owned at least 1 UCC LLIN, but only 56.8% were adequately covered by UCC LLINs. In an adjusted analysis, the factor most strongly associated with adequate coverage by UCC LLINs was fewer household residents (1–4 vs 7–14;adjusted odds ratio [aOR] 12.96, 95% CI 4.76–35.26, p < 0.001;5–6 vs 7–14 residents;aOR 2.99, 95% CI 1.21–7.42, p = 0.018). Of the 3166 residents of households that owned at least one UCC LLIN, only 1684 (53.2%) lived in adequately covered households;89.9% of these used an LLIN the previous night, compared to 1034 (69.8%) of 1482 residents living in inadequately covered households. In an adjusted analysis, restricted to residents of inadequately covered households, LLIN use was higher in children under-five than those aged 5–15 years (aOR 3.04, 95% CI 2.08–4.46, p < 0.001), and higher in household heads than distantly-related residents (aOR 3.94, 95% CI 2.38–6.51, p < 0.001). Conclusions Uganda’s 2021–21 campaign was successful, despite the COVID-19 pandemic. In future campaigns, strategies should be adopted to ensure high LLIN coverage, particularly for larger households. A better understanding of the drivers of LLIN use within households is needed to guide future interventions, educational messages, and behaviour change communication strategies;school-aged children and distantly-related residents appear vulnerable and could be targeted. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04302-7.

5.
Front Immunol ; 13: 809264, 2022.
Article in English | MEDLINE | ID: covidwho-1979036

ABSTRACT

Memory B cells (MBCs) and plasma antibodies against Plasmodium falciparum (Pf) merozoite antigens are important components of the protective immune response against malaria. To gain understanding of how responses against Pf develop in these two arms of the humoral immune system, we evaluated MBC and antibody responses against the most abundant merozoite antigen, full-length Pf merozoite surface protein 1 (PfMSP1FL), in individuals from a region in Uganda with high Pf transmission. Our results showed that PfMSP1FL-specific B cells in adults with immunological protection against malaria were predominantly IgG+ classical MBCs, while children with incomplete protection mainly harbored IgM+ PfMSP1FL-specific classical MBCs. In contrast, anti-PfMSP1FL plasma IgM reactivity was minimal in both children and adults. Instead, both groups showed high plasma IgG reactivity against PfMSP1FL, with broadening of the response against non-3D7 strains in adults. The B cell receptors encoded by PfMSP1FL-specific IgG+ MBCs carried high levels of amino acid substitutions and recognized relatively conserved epitopes on the highly variable PfMSP1 protein. Proteomics analysis of PfMSP119-specific IgG in plasma of an adult revealed a limited repertoire of anti-MSP1 antibodies, most of which were IgG1 or IgG3. Similar to B cell receptors of PfMSP1FL-specific MBCs, anti-PfMSP119 IgGs had high levels of amino acid substitutions and their sequences were predominantly found in classical MBCs, not atypical MBCs. Collectively, these results showed evolution of the PfMSP1-specific humoral immune response with cumulative Pf exposure, with a shift from IgM+ to IgG+ B cell memory, diversification of B cells from germline, and stronger recognition of PfMSP1 variants by the plasma IgG repertoire.


Subject(s)
Malaria , Merozoite Surface Protein 1 , Adult , Animals , Antibodies, Protozoan , Antibody Formation , Child , Humans , Immunoglobulin G , Immunoglobulin M/metabolism , Memory B Cells , Merozoites , Plasmodium falciparum , Receptors, Antigen, B-Cell/metabolism , Uganda
6.
PLoS One ; 17(5): e0265334, 2022.
Article in English | MEDLINE | ID: covidwho-1833638

ABSTRACT

OBJECTIVE: The objective of this study was to evaluate the performance of seven antigen rapid diagnostic tests (Ag RDTs) in a clinical setting to identify those that could be recommended for use in the diagnosis of SARS-CoV-2 infection in Uganda. METHODS: This was a cross-sectional prospective study. Nasopharyngeal swabs were collected consecutively from COVID-19 PCR positive and COVID-19 PCR negative participants at isolation centers and points of entry, and tested with the SARS-CoV-2 Ag RDTs. Test sensitivity and specificity were generated by comparing results against qRT-PCR results (Berlin Protocol) at a cycle threshold (Ct) cut-off of ≤39. Sensitivity was also calculated at Ct cut-offs ≤29 and ≤33. RESULTS: None of the Ag RDTs had a sensitivity of ≥80% at Ct cut-off values ≤33 and ≤39. Two kits, Panbio™ COVID-19 Ag and VivaDiag™ SARS-CoV-2 Ag had a sensitivity of ≥80% at a Ct cut-off value of ≤29. Four kits: BIOCREDIT COVID -19 Ag, COVID-19 Ag Respi-Strip, MEDsan® SARS-CoV-2 Antigen Rapid Test and Panbio™ COVID-19 Ag Rapid Test had a specificity of ≥97%. CONCLUSIONS: This evaluation identified one Ag RDT, Panbio™ COVID-19 Ag with a performance at high viral load (Ct value ≤29) reaching that recommended by WHO. This kit was recommended for screening of patients with COVID -19-like symptoms presenting at health facilities.


Subject(s)
COVID-19 , SARS-CoV-2 , Antigens, Viral/analysis , COVID-19/diagnosis , Cross-Sectional Studies , Diagnostic Tests, Routine , Humans , Prospective Studies , Sensitivity and Specificity , Uganda/epidemiology
7.
Emerg Infect Dis ; 28(5): 1021-1025, 2022 05.
Article in English | MEDLINE | ID: covidwho-1760189

ABSTRACT

Genomic surveillance in Uganda showed rapid replacement of severe acute respiratory syndrome coronavirus 2 over time by variants, dominated by Delta. However, detection of the more transmissible Omicron variant among travelers and increasing community transmission highlight the need for near-real-time genomic surveillance and adherence to infection control measures to prevent future pandemic waves.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Pandemics , SARS-CoV-2/genetics , Uganda/epidemiology
8.
Malar J ; 20(1): 475, 2021 Dec 20.
Article in English | MEDLINE | ID: covidwho-1635854

ABSTRACT

BACKGROUND: In March 2020, the government of Uganda implemented a strict lockdown policy in response to the COVID-19 pandemic. Interrupted time series analysis (ITSA) was performed to assess whether major changes in outpatient attendance, malaria burden, and case management occurred after the onset of the COVID-19 epidemic in rural Uganda. METHODS: Individual level data from all outpatient visits collected from April 2017 to March 2021 at 17 facilities were analysed. Outcomes included total outpatient visits, malaria cases, non-malarial visits, proportion of patients with suspected malaria, proportion of patients tested using rapid diagnostic tests (RDTs), and proportion of malaria cases prescribed artemether-lumefantrine (AL). Poisson regression with generalized estimating equations and fractional regression was used to model count and proportion outcomes, respectively. Pre-COVID trends (April 2017-March 2020) were used to predict the'expected' trend in the absence of COVID-19 introduction. Effects of COVID-19 were estimated over two six-month COVID-19 time periods (April 2020-September 2020 and October 2020-March 2021) by dividing observed values by expected values, and expressed as ratios. RESULTS: A total of 1,442,737 outpatient visits were recorded. Malaria was suspected in 55.3% of visits and 98.8% of these had a malaria diagnostic test performed. ITSA showed no differences between observed and expected total outpatient visits, malaria cases, non-malarial visits, or proportion of visits with suspected malaria after COVID-19 onset. However, in the second six months of the COVID-19 time period, there was a smaller mean proportion of patients tested with RDTs compared to expected (relative prevalence ratio (RPR) = 0.87, CI (0.78-0.97)) and a smaller mean proportion of malaria cases prescribed AL (RPR = 0.94, CI (0.90-0.99)). CONCLUSIONS: In the first year after the COVID-19 pandemic arrived in Uganda, there were no major effects on malaria disease burden and indicators of case management at these 17 rural health facilities, except for a modest decrease in the proportion of RDTs used for malaria diagnosis and the mean proportion of malaria cases prescribed AL in the second half of the COVID-19 pandemic year. Continued surveillance will be essential to monitor for changes in trends in malaria indicators so that Uganda can quickly and flexibly respond to challenges imposed by COVID-19.


Subject(s)
Ambulatory Care , COVID-19/epidemiology , Malaria/epidemiology , Chronic Disease Indicators , Humans , Infection Control , Interrupted Time Series Analysis , Malaria/diagnosis , Malaria/therapy , Malaria/transmission , Rural Health , Uganda/epidemiology
9.
Nat Microbiol ; 6(8): 1094-1101, 2021 08.
Article in English | MEDLINE | ID: covidwho-1294473

ABSTRACT

Here, we report SARS-CoV-2 genomic surveillance from March 2020 until January 2021 in Uganda, a landlocked East African country with a population of approximately 40 million people. We report 322 full SARS-CoV-2 genomes from 39,424 reported SARS-CoV-2 infections, thus representing 0.8% of the reported cases. Phylogenetic analyses of these sequences revealed the emergence of lineage A.23.1 from lineage A.23. Lineage A.23.1 represented 88% of the genomes observed in December 2020, then 100% of the genomes observed in January 2021. The A.23.1 lineage was also reported in 26 other countries. Although the precise changes in A.23.1 differ from those reported in the first three SARS-CoV-2 variants of concern (VOCs), the A.23.1 spike-protein-coding region has changes similar to VOCs including a change at position 613, a change in the furin cleavage site that extends the basic amino acid motif and multiple changes in the immunogenic N-terminal domain. In addition, the A.23.1 lineage has changes in non-spike proteins including nsp6, ORF8 and ORF9 that are also altered in other VOCs. The clinical impact of the A.23.1 variant is not yet clear and it has not been designated as a VOC. However, our findings of emergence and spread of this variant indicate that careful monitoring of this variant, together with assessment of the consequences of the spike protein changes for COVID-19 vaccine performance, are advisable.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Motifs , Coronavirus Nucleocapsid Proteins/genetics , Genetic Variation/genetics , Genome, Viral/genetics , Humans , Phosphoproteins/genetics , Phylogeny , Uganda/epidemiology , Viral Proteins/genetics
10.
PLoS One ; 16(5): e0251150, 2021.
Article in English | MEDLINE | ID: covidwho-1226893

ABSTRACT

INTRODUCTION: Despite the limited evidence for its effectiveness, thermal screening at points of entry has increasingly become a standard protocol in numerous parts of the globe in response to the COVID-19 pandemic. We sought to determine the effectiveness of thermal screening as a key step in diagnosing COVID-19 in a resource-limited setting. MATERIALS AND METHODS: This was a retrospective cross-sectional study based on a review of body temperature and Xpert Xpress SARS CoV-2 test results records for truck drivers entering Uganda through Mutukula between 15th May and 30th July 2020. All records missing information for body temperature, age, gender, and Xpert Xpress SARS CoV-2 status were excluded from the data set. A data set of 7,181 entries was used to compare thermal screening and Xpert Xpress SARS CoV-2 assay test results using the diagnostic statistical test in STATAv15 software. The prevalence of COVID-19 amongst the truck drivers based on Xpert Xpress SARS CoV-2 assay results was determined. The sensitivity, specificity, positive predictive value, negative predictive value, positive and negative Likelihood ratios were obtained using Xpert Xpress SARS CoV-2 assay as the gold standard. RESULTS: Based on our gold standard test, the proportion of persons that tested positive for COVID-19 was 6.7% (95% CI: 6.1-7.3). Of the 7,181 persons that were thermally screened, 6,844 (95.3%) were male. The sample median age was 38 years (interquartile range, IQR: 31-45 years). The median body temperature was 36.5°C (IQR: 36.3-36.7) and only n (1.2%) had a body temperature above 37.5°C. The sensitivity and specificity of thermal screening were 9.9% (95% CI: 7.4-13.0) and 99.5% (95% CI: 99.3-99.6) respectively. The positive and negative predictive values were 57.8 (95% CI: 46.5-68.6) and 93.9 (95% CI: 93.3-94.4) respectively. The positive and negative Likelihood Ratios (LRs) were 19 (95% CI: 12.4-29.1) and 0.9 (95% CI: 0.88-0.93) respectively. CONCLUSION: In this study population, the use of Thermal screening alone is ineffective in the detection of potential COVID-19 cases at point of entry. We recommend a combination of screening tests or additional testing using highly sensitive molecular diagnostics such as Polymerase Chain Reaction.


Subject(s)
COVID-19/diagnosis , Adult , Body Temperature , Cross-Sectional Studies , Female , Humans , Male , Mass Screening , Middle Aged , Predictive Value of Tests , Retrospective Studies , SARS-CoV-2/isolation & purification , Uganda/epidemiology , Young Adult
11.
Int J Infect Dis ; 104: 282-286, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-898982

ABSTRACT

OBJECTIVES: There is a high demand for SARS-CoV-2 testing to identify COVID-19 cases. Real-time quantitative PCR (qRT-PCR) is the recommended diagnostic test but a number of constraints prevent its widespread implementation, including cost. The aim of this study was to evaluate a low cost and easy to use rapid antigen test for diagnosing COVID-19 at the point of care. METHODS: Nasopharyngeal swabs from suspected COVID-19 cases and low-risk volunteers were tested with the STANDARD Q COVID-19 Ag Test and the results were compared with the qRT-PCR results. RESULTS: In total, 262 samples were collected, including 90 qRT-PCR positives. The majority of samples were from males (89%) with a mean age of 34 years and only 13 (14%) of the positives were mildly symptomatic. The sensitivity and specificity of the antigen test were 70.0% (95% confidence interval (CI): 60-79) and 92% (95% CI: 87-96), respectively, and the diagnostic accuracy was 84% (95% CI: 79-88). The antigen test was more likely to be positive for samples with qRT-PCR Ct values ≤29, with a sensitivity of 92%. CONCLUSIONS: The STANDARD Q COVID-19 Ag Test performed less than optimally in this evaluation. However, the test may still have an important role to play early in infection when timely access to molecular testing is not available but the results should be confirmed by qRT-PCR.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/immunology , Adult , COVID-19/virology , Female , Humans , Male , Nasopharynx/virology , Point-of-Care Systems , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Uganda
SELECTION OF CITATIONS
SEARCH DETAIL